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Formal linguistic competence (getting the
form of language right) and functional
linguistic competence (using language
to accomplish goals in the world) are dis-
tinct cognitive skills.

The human brain contains a network of
areas that selectively support language
processing (formal linguistic compe-
tence), but not other domains like logical
or social reasoning (functional linguistic
competence).

In the late 2010s, large language
models trained on word prediction
Large language models (LLMs) have come closest among all models to date to
mastering human language, yet opinions about their linguistic and cognitive capa-
bilities remain split. Here, we evaluate LLMs using a distinction between formal lin-
guistic competence (knowledge of linguistic rules and patterns) and functional
linguistic competence (understanding and using language in the world). We ground
this distinction in human neuroscience, which has shown that formal and functional
competence rely on different neural mechanisms. Although LLMs are surprisingly
good at formal competence, their performance on functional competence tasks re-
mains spotty and often requires specialized fine-tuning and/or coupling with exter-
nal modules. We posit that models that use language in human-like ways would
need to master both of these competence types, which, in turn, could require the
emergence of separate mechanisms specialized for formal versus functional lin-
guistic competence.
tasks began achieving unprecedented
success in formal linguistic compe-
tence, showing impressive perfor-
mance on linguistic tasks that likely
require hierarchy and abstraction.

Consistent performance on tasks requir-
ing functional linguistic competence is
harder to achieve for large language
models and often involves augmenta-
tions beyond next word prediction.

Evidence from cognitive science and
neuroscience can illuminate the capabili-
ties and limitations of large language
models and pave the way toward better,
human-likemodels of both language and
thought.
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The language–thought conflation
When we hear a sentence, we typically assume that it was produced by a rational, thinking agent
(another person). The sentences that people generate in day-to-day conversations are based on
their world knowledge (‘Not all birds can fly.’), their reasoning abilities (‘You’re 15, you can’t go to
a bar.’), and their goals (‘Would you give me a ride, please?’). Thus, we often use other people’s
statements as a window into their minds.

In 1950, Alan Turing leveraged this tight relationship between language and thought to propose his
famous test [1]. The Turing test uses language as an interface to cognition, allowing a human partic-
ipant to probe the knowledge and reasoning capacities of two conversation partners to determine
which of them is a human and which is a machine. Although the utility of the Turing test has since
been questioned, it has undoubtedly shaped the way society today thinks of machine intelligence [2].

The popularity of the Turing test, combined with language–thought coupling in everyday life, has
led to several common fallacies related to the language–thought relationship. One fallacy is that
an entity (be it a human or a machine) that is good at language must also be good at thinking.
If an entity generates coherent stretches of text, it must possess rich knowledge and reasoning
capacities. Let’s call this the ‘good at language -> good at thought’ fallacy. This fallacy has
come to the forefront due to the recent rise of large language models (LLMs) (see Glossary),
including OpenAI’s GPT models, Anthropic’s Claude, and more open alternatives [3] like
Meta’s LLaMa models and EleutherAI’s GPT-J. LLMs today can produce text that is difficult to
distinguish from human output, outperform humans at some text comprehension tasks [4,5],
and show superhuman performance on next-word prediction [6]. As a result, claims have
emerged, both in the popular press and in the academic literature, that LLMs are not only a
major advance in language processing, but are also showing ‘sparks of artificial general
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intelligence’ [7]. However, when evaluating LLMs’ capabilities, it is important to distinguish be-
tween their ability to think and their linguistic ability. The ‘good at language -> good at thought’
fallacy makes it easy to confuse the two, leading people to mistakenly attribute intelligence and
intentionality to even the most basic dialog systems (e.g., the chatbot Eliza from the 1960s [8]).

The contrapositive of this fallacy is that a model that is bad at thinkingmust also be a badmodel of
language. Let’s call this the ‘bad at thought -> bad at language’ fallacy. LLMs are commonly crit-
icized for their lack of consistent, generalizable world knowledge [9], lack of commonsense rea-
soning abilities [10], and failure to understand what an utterance is really about [11]. Based on
this evidence, some critics suggest that the models’ failure to produce linguistic output that
fully captures the richness and sophistication of human thought means that they are not good
models of human language.

Both the ‘good at language -> good at thought’ and the ‘bad at thought -> bad at language’
fallacies stem from the conflation of language and thought. This conflation is unsurprising: it
is still novel, and thus uncanny, to encounter an entity that generates fluent sentences despite
lacking a human identity. Thus, our heuristics for understanding what a language model is
doing, heuristics that emerged from our language experience with other humans, are broken.

To mitigate the language–thought conflation fallacies, we propose to systematically distinguish
between two kinds of linguistic competence: formal linguistic competence, the knowledge
of rules and statistical regularities of language, and functional linguistic competence, the abil-
ity to use language in real-world situations. Our motivation for the formal/functional distinction
comes from the human brain, where these skills are robustly dissociable. Both formal and func-
tional linguistic competence are essential components of human language use: an effective com-
municator needs to both generate grammatical, meaningful utterances and strategically use
those utterances to achieve diverse, context-dependent goals [12,13].

Armed with this distinction, we evaluate the capabilities of contemporary LLMs and argue that
LLMs exhibit a gap between formal and functional competence skills: for modern LLMs, formal
competence in English is near human-level, whereas their functional competence remains
patchy, with results depending on specific functional competence domains and on tasks within
those domains. Moreover, whereas formal linguistic competence in LLMs improves drastically
with the amount of training data, functional linguistic competence improvements with scale are
less consistent, such that LLM developers have now shifted away from simple scaling-up of
the language prediction task to more specialized methods targeting behaviors of interest [e.g.,
reinforcement learning from human feedback (RLHF)] [14] or coupling an LLMwith external
specialized modules (leading to so-called ‘augmented language models’ [15]).

Therefore, we posit that the next-word prediction objective allows a model to master formal but
not necessarily functional linguistic competence. What is required for mastery of functional com-
petence is harder to pin down, in part because so much of human cognition (commonsense rea-
soning, scientific knowledge, cultural knowledge) can be conveyed through language and thus
learned from language, even if the underlying cognitive capacities are not themselves inherently
linguistic. As a result, language models acquire a variety of non-linguistic capacities. But the ulti-
mate ceiling for functional competence depends on important open questions about the informa-
tion contained in the linguistic signal and the mechanisms used to leverage that information.

In the rest of the paper, we develop a framework for evaluating the competence of modern lan-
guage models from a cognitive science perspective. In the first section, we elaborate on the
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Glossary
Abstraction: for our purposes, a
linguistic representation that allows for
generalization. Part-of-speech is one
such example: words like ‘dog’ and ‘cat’
belong to the abstract category of
‘nouns’.
Architectural modularity: involves
explicitly building distinct modules into a
computational model, with each module
responsible for achieving different goals.
Emergent modularity: induction of
modularity through the model training
process, without explicitly building it into
the architecture.
Fine-tuning: a process by which, after
a model is pretrained, it receives
additional training on new data, often for
a specific purpose.
Formal linguistic competence: the
ability to get the form of language right. It
includes knowledge of word formation
(e.g., phonology and morphology),
knowledge of word meaning, and
knowledge of rules and statistical
patterns for how words combine to
create sentences. Note that our use of
the term ‘competence’ differs from the
classic competence/performance
distinction in linguistics, given that in
both models and humans separating
competence and performance is often
difficult.
Functional linguistic competence:
the ability to use language to accomplish
things in the world. It relies on a host of
non-language-specific cognitive
domains like formal reasoning, world
knowledge, situation tracking, and social
cognition.
Hierarchical structure: a crucial
property of language that allows it to be
more than just a linear sequence of
words. Rather, how words go together
in a sentence is better captured by a
tree-like structure, where some words
and phrases are nested inside larger
phrases.
Language network: the
interconnected set of brain regions that
respond selectively to language but not
to non-linguistic inputs and tasks.
Large language models (LLMs):
models based on deep neural
architectures (often but not always
transformers) and trained on massive
amounts of text using a word-in-context
prediction task (sometimes with
additional training objectives incorporated
during or after the main training process).
The term ‘large’ refers to the number of
parameters in these models, which
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constructs of formal and functional linguistic competence and motivate this distinction based on
evidence from human neuroscience. In the second section, we discuss the successes of LLMs in
achieving formal linguistic competence, showing thatmodels trained onword-in-context prediction
capture numerous complex linguistic phenomena. In the third section, we consider several do-
mains required for functional linguistic competence, formal reasoning, world knowledge, situation
modeling, and social cognition, on which today’s LLMs often fail, or at least perform worse than
humans. In the fourth section, we discuss the implications of our framework for building and eval-
uating future models of language and thought before summarizing our key conclusions in the final
section.

Formal versus functional linguistic competence
What does linguistic competence entail?
Formal linguistic competence. We define formal linguistic competence as a set of capacities re-
quired to produce and comprehend a given language. Broadly, being formally competent means
getting the form of language right: knowing which strings could be valid words of a language
(e.g., bnick cannot be a word in English but blick can [16]), how to productively combine mor-
phemes to form novel words (e.g., Barack Obama-less-ness but not Barack Obama-ness-less
[17]), learning enough about word meanings to know which words can go in which slots in a sen-
tence [18], and knowing how to combine words into valid sentences.

Because of its centrality in the history of linguistics, it is the last of these (forming words into
sentences) that we focus on in our discussion of formal competence. Most users of Standard
Written English say: ‘The dogs in my bedroom are asleep’ rather than ‘The dogs in my bedroom
is asleep’, because the verb ‘to be’ must match the number of the noun that is the subject of the
sentence (‘the dogs’), even though that verb is closer to an intervening, singular noun (‘bedroom’).
Linguistic competence also requires exquisite sensitivity to the regularities of idiosyncratic linguistic
constructions. For instance, although English speakers know not to use the indefinite article
‘a’ with plural nouns, making a phrase like ‘a days’ ill-formed, they also know that it is allowed
in a special construction where an adjective and a numeral intervene: ‘a beautiful 5 days in
New York’ [19,20].

Human language users likely learn rules, plus thousands of idiosyncratic constructions [21],
through some combination of sophisticated statistical learning [22–24] and innate conceptual
and/or linguistic machinery [25–27]. The result is the human ability to understand and produce
grammatical and coherent linguistic utterances.

Functional linguistic competence. In addition to being competent in the rules and statistical reg-
ularities of language, a competent language user uses language to accomplish goals in the world
[12,28,29]: to talk about things that can be seen or felt or heard, to reason about diverse topics; to
make requests; to cajole, prevaricate, and flatter. People use language in tandem with other per-
ceptual and cognitive systems, such as our senses and our memory, and deploy words as part of
a broader communication framework supported by our sophisticated social skills. A formal lan-
guage system in isolation is useless unless it can interface with the rest of perception, cognition,
and action.

The capacities required to use language to do things in the world are distinct from formal
competence and depend crucially on non-linguistic cognition (Figure 1). Thus, we define
functional linguistic competence as non-language-specific cognitive functions that are
required when using language in tandem with non-language-specific capacities in real-
world circumstances.
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 3

CellPress logo


TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Separating formal and functional competence. Successful use of language relies on multiple cognitive skills,
some of which (required for formal competence) are language-specific and some (required for functional competence) are not.
Determining whether a particular failure stems from a gap in formal competence or functional competence is key to evaluating and
improving language models.

ranges from millions to billions, as well as
the size of the training data.
Pretraining: the process by which a
model is first trained on a general task
(for LLMs, typically a text prediction task)
before being trained or used for a more
specialized purpose.
Reinforcement learning from
human feedback (RLHF): a process
by which reinforcement learning
techniques are used to impart human
preferences (e.g., as to which of two
model outputs is preferred) to a model. It
seems to lead to significant
improvements on functional tasks.
Theory of mind: a cognitive skill that
enables thinking and reasoning about
the minds of others (i.e., what others
know, believe, want, etc.).
Tokens: the basic units in language
models. In earlier language models, they
were often words or morphemes. In
today’s LLMs, they are often inferred
from large amounts of text using an
algorithm like Byte Pair Encoding. They
can resemble words and morphemes,
but sometimes also
linguistically unnatural units.
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Motivation for the distinction between formal versus functional linguistic competence
Our motivation for the distinction between formal and functional linguistic competence comes
from what we know about the architecture of the human mind. In humans, language is robustly
dissociated from the rest of high-level cognition, as well as from perception and action. Next
we briefly summarize a body of evidence from cognitive science and neuroscience that supports
this dissociation.

The language network supports language processing in the human brain. Human language pro-
cessing draws on a set of interconnected brain areas in the frontal and temporal lobes (typically in
the left hemisphere). This language network supports both comprehension (spoken, written,
and signed) [30–33] and production [34,35]; is sensitive to linguistic regularities at multiple levels:
from phonological/sub-lexical [36] to phrase/sentence level [37,38]; and supports linguistic oper-
ations related both to the processing of word meanings and to combinatorial semantic and
4 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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syntactic processing [35,38]. Damage to the language network leads to linguistic deficits [39,40].
This tight link between the language network and language function indicates that these brain
regions are responsible for language processing in humans.

The language network does not support non-linguistic cognition. The language network is re-
markably selective for language. Evidence of a strong dissociation between language processing
and non-linguistic abilities comes from two main sources: (i) functional brain imaging studies of
neurotypical adults, and (ii) behavioral investigations of individuals with aphasia, a language impair-
ment typically caused by a stroke or degeneration.

Brain imaging techniques like functional MRI (fMRI) are used to observe real-time activity in the
language network in healthy individuals. Given its high spatial resolution, fMRI is well-suited to
study whether any two cognitive abilities draw on the same brain structures. For example, to
ask whether language and mathematical reasoning recruit the same brain areas, we can have
participants perform a language task and a math task while in an MRI scanner and then test
whether brain regions that are active during language processing are also active when partici-
pants solve a math problem. This approach reveals that the language network is extremely selec-
tive for language processing: it responds reliably when people listen to, read, or generate
sentences, but not when they perform arithmetic tasks, engage in logical reasoning, understand
computer programs, listen to music, categorize objects or events, reason about people’s mental
states, or process non-verbal communicative information like facial expressions or gestures
[37,41–48].

Studies of individuals with aphasia provide a unique opportunity for testing which cognitive ca-
pacities rely on linguistic representations. Of particular interest are cases of ‘global aphasia’,
which affects both production and comprehension. Individuals with global aphasia exhibit severe
linguistic deficits that spare nothing but a small set of words. If some aspects of non-linguistic
cognition draw on the same resources as language, then individuals with severe linguistic deficits
should invariably exhibit impaired performance on the relevant non-linguistic tasks. However, de-
spite the nearly complete loss of linguistic abilities, individuals with severe aphasia can have intact
non-linguistic cognitive abilities: they can play chess, solve arithmetic problems, leverage their
world knowledge to perform diverse tasks, reason about cause and effect, and navigate complex
social situations [49].

In summary, evidence from brain imaging studies and from individuals with aphasia is remarkably
consistent: the mechanisms that process language in the human brain do not support non-
linguistic cognitive tasks. This sharp dissociation suggests that, in examining language models’
functionality, we should separate their linguistic abilities from their abstract knowledge and rea-
soning abilities, which can be probed, and perhaps even learned, through a linguistic interface,
but which require more than formal linguistic competence.

LLMs have largely mastered formal linguistic competence in English
In a 2019 interview, Chomsky remarked: ‘We have to ask here a certain question: is [deep
learning] engineering or is it science? [...] On engineering grounds, it’s kind of worth having, like
a bulldozer. Does it tell you anything about human language? Zero’ (https://www.youtube.
com/watch?v=cMscNuSUy0I). The view that deep learning models are not of scientific interest
remains common in linguistics and, despite many arguments for integrating such models into re-
search on human language processing and acquisition [50–52] and a chorus of arguments that
they should be taken seriously as linguistic and cognitive models [53–55], their integration into
language research still encounters resistance.
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In this section, we evaluate the performance of LLMs qua language models by asking whether
these models have made progress towards achieving formal linguistic competence, the kind of
competence supported by the language-selective network in the human brain. We argue that
LLMs have turned out to be surprisingly successful at mastering formal competence, qualitatively
different in their formal linguistic capacities from models from before roughly 2018 in a way that
was predicted by few practitioners in the field and which was unexpected given longstanding
claims that grammatically competent systems would require strong language-specific priors.
With surprise comes information: models’ successes are informative for linguistic theorizing.

Statistical language models: some fundamentals
LLMs arose from several earlier approaches in computational linguistics, including statistical lan-
guage modeling, word embeddings, and connectionism (an earlier term for the approach that
morphed into today’s deep learning). Similar to earlier statistical language models, LLMs are usu-
ally first trained on a word prediction task (the same task used for training n-gram models going
back to Shannon’s work in the mid-20th century; see [56] for historical overview). Similar to ap-
proaches in distributional semantics and word embeddings (for overviews, see [57,58]), LLMs
represent linguistic information as vectors in a high-dimensional space. Similar to earlier connec-
tionist approaches [59,60], LLMs are neural networks: a class of machine learning systems that
was originally inspired by the human brain and learns its parameters from the input data. All of
these approaches stand in contrast to models that use explicit, structured hierarchical represen-
tations of syntactic rules (see [61] for a discussion of these two divergent paradigms).

N-grams and word embedding models achieved some success in various domains in natural
language processing (e.g., spelling correction, spam classification, sentiment analysis). However,
they never approached human-level performance on general language tasks like text generation,
leading to claims that purely statistical approaches would never be able to capture the richness of
natural language, particularly in complex syntactic, morphological, and semantic domains (e.g.,
[62]). For instance, it has been claimed that statistical approaches, which use linear strings of
words as input, are in principle unable to learn rare and complex syntactic features that require
representing phrases and sentences hierarchically [63]. This pessimism is now challenged
by LLMs.

LLMs are typically first trained on a training set constructed from a massive amount of text from
the web. During pretraining, LLMs have a simple objective: predict a held-out token (the
basic unit in LLMs, often but not always corresponding to words or morphemes [64]) based on
a fixed number of previous tokens. The predicted token is then compared with the ground
truth (which token actually occurred in that sentence), and the error signal is propagated back
through the model to update its many parameters. The token prediction objective is often used
as a pretraining step , and the model is then fine-tuned for a more specific task.

Although it is tempting [65] to move the goalposts and focus on what thesemodels are still unable
to do, we argue that the remarkable advances in LLMs’ ability to capture various linguistic phe-
nomena should not be overlooked. Significant formal linguistic abilities arise in models on the
scale of GPT-2 or BERT and seem to plateau at a high level in contemporary LLMs (Box 1).

LLMs learn core aspects of human language processing
For LLMs to be useful as models of language processing in humans, we must be convinced that
the models encode the abstract phonological, morphological, syntactic, and semantic rules that
characterize human language (see Box 2 for a distinction between ‘linguistic’ and conceptual
semantics). Although interesting differences exist between linguistic processing in LLMs and
6 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Box 1. The path toward formal linguistic competence

When did LLMs achieve formal linguistic competence? Table I shows text generations from an n-gram model, an RNN (a
recurrent neural network, which were state-of-the-art language models in the mid-2010s, before transformers), GPT-2,
GPT-3, and GPT-4.

The n-gram model and RNN clearly fail to show formal linguistic competence: the sentences are not grammatical or sen-
sible. By contrast, GPT-2 (a model produced just 8 years after the RNN in Row 2) generates grammatical output: the verbs
agree with their subjects, parts of speech are used appropriately, relatively complex syntactic constructions like the relative
clause ‘that has nothing to do with whowe are’ is appropriately tied to a noun phrase. However, compared with the GPT-3
and GPT-4 output, it makes less sense: what does ‘everything about being with people’ mean? Finally, the outputs of
GPT-3 and GPT-4 are both grammatical and semantically coherent, such that they can plausibly be taken for answers
generated by a human.

Table I. Examples of texts generated by increasingly more advanced language models in response to a
prompt ’The meaning of life is...’ (following Sutskever et al. [194] and using their example verbatim in
Row 2). Starting with GPT-2, outputs are grammatical and largely use the rules and patterns of English
(formal linguistic competence).

Model Text

3-gram model trained on
Moby Dick

The meaning of life is gulped and gone, bleeds with keenest anguish at the same
muteness of humanity over all creations. Just so with Ahab, ’says I;’ look here you
sabbee me, has every reason to be served.

RNN from [194] The meaning of life is the tradition of the ancient human reproduction: it is less
favorable to the good boy for when to remove her bigger. In the show’s agreement
unanimously resurfaced.

GPT-2 [195] The meaning of life is something simple that has nothing to do with who we are.
Everything about being with people is tied to those characteristics, and people are
just machines.

GPT-3 davinci-002 [89] The meaning of life is a mystery to us all, and a question that will never be answered.
Life is what we make of it, and it’s up to each of us to find our own meaning in life.

GPT-4 (via ChatGPT
interface)

The meaning of life is subjective and varies greatly depending on personal beliefs,
values, and experiences. Some people find meaning in relationships, personal
achievements, or spiritual beliefs, while others may see it as a journey of
self-discovery, learning, or contributing to the greater good.

Trends in Cognitive Sciences
humans [66,67], there are also important similarities. Here, we review evidence that LLMs suc-
ceed as models of formal linguistic competence. We focus primarily on syntax, showing evidence
of mastery on grammatical benchmarks as well as evidence for emergent syntactic structure in
LLMs. But similar successes, both in performance and emergent structure, have been shown
in other linguistic domains (e.g., emergent phonological structure [68], productive generation of
morphologically complex neologisms [69], rich lexical semantic information [70], etc.).
Box 2. What about semantics?

Does semantics fall under formal or functional linguistic competence? The answer depends on what kind of semantics we
are talking about.

One meaning of semantics, often associated with compositional and lexical semantics, concerns the way that meaning is
derived from words and their combinations. We consider this aspect part of formal linguistic competence. Indeed, the
language network in the brain responds both to lexical semantics(i.e., retrieving the meaning of individual words) and to
compositional semantics (i.e., constructing the meaning of multi-word utterances) [38]. Insofar as LLMs are highly sensitive
to lexical and combinatorial semantics, they parallel the language network.

The second meaning of semantics is something closer to ‘general conceptual knowledge’ (used in contexts such as
‘non-verbal semantics’, e.g., extracting the meaning of a picture). This definition is closely related to the notion of world
knowledge, which we discuss in our section on world knowledge. Given the fact that conceptual knowledge and rea-
soning does not have to operate over linguistic inputs but is nonetheless essential for fluent language use, we classify it
under functional linguistic competence.

Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 7
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LLMs performwell on benchmarks of diverse linguistic phenomena.By being trained for word pre-
diction, transformer models learn a lot about the structure of language, including linguistic features
that, even recently, were thought to be beyond the scope of statistical models. These models have
succeeded not just on tests of general language understanding developed by the natural language
processing (NLP) community (e.g., GLUE tasks [71]), but, critically for our purposes, on tests of lin-
guistic competence in English and other languages with massive corpora available (see Box 3 for
discussion of lower-resourced languages).

The benchmark BLiMP [72], for instance, contains minimal pairs of grammatical versus ungram-
matical sentences across a diverse range of complex linguistic phenomena like filler-gap depen-
dencies (‘Bert knew what many writers find’ versus ‘*Bert knew that many writers find’) and
negative polarity items (‘The truck has clearly tipped over’ versus ‘*The truck has ever tipped
over’). Strikingly, a model [73] submitted to the BabyLM challenge [74] achieved 86% on
BLiMP (cf. human baseline of 89%) despite being trained on an amount of data comparable
with what a human child might be exposed to (Box 3). Models achieve similarly impressive results
on other linguistic benchmarks like SyntaxGym [75] and there are now dozens of investigations of
specific complex linguistic phenomena (some of which we discuss later).
Box 3. Limitations of LLMs as human-like language learners and processors

A preponderance of evidence suggests that LLMs acquire formal linguistic competence. Here, we address three common
criticisms of LLMs as models of human language processing.

Excessive reliance on statistical regularities

LLMs succeed, in part, by learning statistical regularities and they can be ‘right for the wrong reason’ [196]. Many of LLMs’
successes can be explained by patterns present in training data, such that a slight deviation from these patterns can dras-
tically decrease performance [197]. In particular, adding noise or distracting information can degrade model performance
[88,198] in ways that do not always affect humans. These results raise the related question of whether LLMs are just stor-
ing and regurgitating their inputs. But a study of GPT-2’s novel behavior [69] showed that, although n-grams up to length 4
often appeared in the training set, GPT-2 generated mostly novel 5-grams and above. Thus, LLMs seem to be capable of
some meaningful generalizable morphosyntactic knowledge beyond mere memorizing.

Unrealistic amounts of training data

Today’s best LLMs are trained on vastly more data than a child is exposed to [199], and some evidence suggests that a
model’s training dataset would need to be unrealistically large to handle some constructions in a human-like way [200],
without stronger priors [201,202]. This difference in the amount of input that models versus human language learners re-
quire is sometimes taken to imply that the models will necessarily be un-human-like. However, there is reason for opti-
mism. The BabyLM competition [74] solicits submissions of language models trained on either a fixed corpus of 10M or
100Mwords, which are posited to be in the range of the number of words heard by a 10-year-old child. The best-perform-
ing model in 2023 [203] achieved impressive performance on the BLiMP benchmark for syntactic minimal pairs, suggest-
ing the possibility that models can learn grammar from smaller amounts of data (see also [80], among others). It has also
been shown that smaller models still provide good matches to human neural responses [204].

Although performance of smaller language models is not perfect, improvements in language models, including the use of
more cognitively-inspired architectures and learning algorithms, could lead to strong performance with far less training
data. As such, important questions are: what inductive biases are introduced by the model architectures and can those
biases be made more human [201]?

Insufficient tests on languages other than English

Because LLMs are data-hungry, they work best on languages for which vast corpora are available. For most human
languages, this is not the case. Moreover, the architectures themselves may be biased towards English and other
European languages [205], and not all languages are equally easy to model given existing infrastructure [206]. That said,
evidence is growing of strong performance in a variety of languages [207] and successful transfer of models to low-resource
languages [208]. We should still, however, proceed with caution in assuming that the success of LLMs will extend to all
languages. This is of particular concern for languages that are typologically distinct from English or have a different modality
(e.g., signed languages).

8 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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LLMs learn hierarchical structure. In human languages, words are combined to make composi-
tional meanings. In a multi-word sentence, the individual words’ meanings do not simply get
added linearly one by one. Instead, they can be combined hierarchically into tree-like
structures.

The hierarchical structure in language manifests in many ways. One prominent example is
non-local feature agreement. In English and many other languages, verbs agree with their sub-
jects. For instance, a plural subject uses the verb ‘are’, whereas a singular subject uses ‘is’. A
bigram model, which simply stores frequencies of two-word strings, could learn that ‘The keys
are on the table’ is more probable than ‘The keys is on the table’ by knowing that ‘keys are’
is more common than ‘keys is’. But such a model would not be able to learn that the subject
and verb agree even if arbitrarily far apart: for instance, ‘The keys to the old, wooden kitchen
cabinet are on the table’ has six intervening words between the subject and verb, and yet
‘are’ still agrees with ‘keys’ and not with ‘cabinet’. However, a model that learns the underlying
hierarchical structure of English should be able to keep track of this long-distance subject–verb
dependency [76].

Today’s LLMs perform long-distance number agreement well above chance, preferring the
grammatical over a non-grammatical sentence continuation even in the presence of intervening
distractor words [77,78], although some models can be distracted by frequency effects (such
as differences in the frequency between the singular and plural forms [79]). In a similar vein,
LLMs can handle other constructions that require complex hierarchy, like filler-gap
dependencies [80]. Finally, studies that examine the internal geometry of the models’ sentence
representations [81], studies that causally intervene on models’ internal representations [82],
and studies that turn on and off specific model ‘neurons’ [83,84] have provided mechanistic in-
sights into how an LLMmight represent hierarchical structure and establish non-local structural
dependencies.

LLMs learn linguistic abstractions. Following [85], we define an abstraction as a generalized lin-
guistic representation, such as a part-of-speech category (e.g., noun or verb) or grammatical role
(e.g., subject or object), that goes beyond simple storage of input and allows for generalization.
The very notion of subject–verb agreement, outlined in the previous section, relies on the abstract
categories of subject and verb. As described in [77], in a sentence like ‘dogs in the neighborhood
often... (bark/barks)’, a model might learn a shallow version of the agreement rule, namely, that
the collocation of ‘dogs’ and ‘bark’ in the same sentence is more common than ‘dogs’ and
‘barks’. However, a model that has an abstract representation of categories like grammatical
subject, grammatical number, and verb should be able to handle long-distance number agree-
ment even for novel combinations of words.

One way to test a model’s knowledge of abstract rules is by using semantically nonsensical
sentences, like ‘The colorless green ideas I ate with the chair... (sleep/sleeps)’. Models have
been shown to perform the agreement task well in several languages, even on these semantically
anomalous sentences [77].

An even more stringent test for linguistic abstraction asks whether LLMs can apply
morphosyntactic rules to novel words. A study of BERT’s abstraction capabilities [86] showed
that BERT has some ability to generalize grammatical categories. They give the model novel
words, used in phrases, as input (e.g., ‘the blick’ where blick is likely a noun and ‘they dax’
where dax is likely a verb) and test whether, based on the input, the model can generalize the
part-of-speech category (e.g., assign a higher score to ‘I went to a blick’ than to ‘I went to a
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dax’). They conclude that BERT succeeds partially at this task: it does learn to generalize, but only
after repeated examples (but see [87,88] for ways in which the word itself affects compositional
ability). Models also seem to (often) be able to use novel words appropriately [69,89].

A large body of work has tested linguistic abstraction in LLMs using a method called probing
[90,91]. In this literature, a classifier is often trained to take as input internal model representations
and then predict as output an abstract category, such as part-of-speech or dependency role. The
logic of the probe is to test whether these abstract categories can be successfully recovered from
the internal model states. Using this approach, it has been claimed that LLMs ‘rediscover the
classical NLP pipeline’ [92], learning at various layers features like part-of-speech categories,
parses, named entities, and semantic roles (although see [93]).

Importantly, a human-like language model is not expected to rely solely on abstract rules.
Humans use diverse cues in their language learning and processing that sometimes over-
ride or conflict with strict hierarchical syntactic processing (e.g., [94,95]). Humans also rely,
to varying extents, on memorizing previously seen input, as opposed to purely applying ab-
stract rules [21,85]. Thus, when evaluating formal competence in LLMs, it is essential to directly
compare their performance with that of humans [96]. For instance, a re-examination [97] of an
earlier study [98] showed that apparent syntactic agreement deficits in GPT-2 occurred on in-
stances that were also challenging for humans. Overall, LLMs clearly learn some linguistic ab-
straction, even if the degree of that abstraction remains a matter of debate (as it does for
humans).

LLMs learn constructions. Recent evidence suggests that LLMs learn syntactic constructions
[99–101]. These constructions can be idiosyncratic, lexically sensitive, and relatively rare, such as
‘a beautiful 5 days in Austin’ [102]. LLMs also show some amount of sensitivity to the preposing
in prepositional phrase construction (‘Surprising though it may be...’), even when the gap crosses
a finite clause boundary (‘Surprising though I know it may be’) [103]. They achieve this sensitivity
even though such examples crossing the finite clause boundary are vanishingly rare: only 58 exam-
ples out of seven billion sentences in a corpus. The fact that models can learn that some vanishingly
rare constructions are grammatical, whereas other equally rare constructions are not, suggests
that LLMs meaningfully learn something about syntax.

Models are also sensitive to the form of the comparative correlative ‘the better the syntax, the better
the semantics’ [104]. However, this sensitivity does notmean that they are sensitive to the semantic
implications of the construction. Indeed, it appears that inferences based on these sentences can
be a challenge (e.g., knowing that if I say ‘the better the syntax, the better the semantics’ and then
tell you that the syntax is better, this means the semantics is better). This asymmetry nicely illus-
trates the formal/functional distinction: the model clearly knows how to use the construction and
get the form right without necessarily being able to access the intended meaning. We discuss
these issues in more detail in later sections.

LLMs are predictive of activity in the human language network
As discussed earlier, language processing in humans relies on a dedicated brain network. This
network exhibits all the hallmarks of formal linguistic competence: it is sensitive to abstract hier-
archical rules in isolated phrases and sentences [31,105–107], in naturalistic narratives
[108–111], and in syntactically well-formed but semantically empty (‘jabberwocky’) stimuli
[31,49,106]. The language network is also sensitive to specific word co-occurrences (e.g., as ev-
idenced by sensitivity to n-gram surprisal [108]), indicating that it learns not only the rules, but also
the patterns of language. The language network’s selectivity for linguistic versus non-linguistic
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inputs, along with its sensitivity to linguistic rules and patterns, allows us to operationalize formal
linguistic competence as a set of computations that in humans take place within the language
network.

If LLMs and the human language network perform similar computations to achieve formal linguis-
tic competence, we expect to observe similarities in their internal organization (see [54] for similar
arguments in the domain of vision). And indeed, LLMs and the human language network exhibit
non-trivial similarities.

First, the internal architecture of LLMs resembles that of the language network. Both operate at
the level of abstract linguistic units (words/tokens) rather than modality-specific representations,
such as pixels or acoustic waveforms, and combine these unit-level representations into com-
posite representations of phrases and sentences. Neither system shows clear spatial segregation
for syntactic and semantic processing (LLMs: [92,112]; brain: [38,111]), indicating that these pro-
cesses are tightly functionally coupled in both.

Second, one can establish a direct mapping between internal LLM representations and neural ac-
tivity patterns within the language network. This mapping can be successfully used to predict
brain responses to novel sentences and words in previously unseen contexts [113–115]. This
similarity between sentence activation patterns in LLMs and the brain is suggestive of similar rep-
resentational mechanisms that support computations in these systems.

We do not claim that the correspondence between LLMs and the language network is one-to-
one. For instance, LLMs learn patterns outside traditional human linguistic competency, such
as predicting newline characters [116]. Nevertheless, the fact that internal representations
learned by contemporary LLMs contain sufficient information to predict the language network’s
responses to diverse linguistic strings indicates at least some correspondence between LLMs’
representations and those in the language network.

Using LLMs as models of formal linguistic competence in humans
LLMs today generate highly coherent, grammatical texts that can be indistinguishable from
human output. In doing so, they exhibit knowledge of hierarchical structure and linguistic abstrac-
tions, while resembling human brain responses during language processing. These models are
not perfect learners of abstract linguistic rules, but neither are humans. We therefore conclude
that LLMs possess substantial formal linguistic competence, at least in English.

LLMs have already overturned claims about the fundamental impossibility of acquiring certain
linguistic knowledge, including hierarchical structure and abstract categories, from the statis-
tics of linguistic input alone [117]. If language modeling continues to improve (including learning
from more realistic kinds and amounts of data; Box 3), this would allow testing more general
versions of this ‘poverty of the stimulus’ argument [118], including specific tests of what induc-
tive biases might be necessary to successfully learn the rules and statistical regularities of
human language. As such, LLMs have substantial value in the scientific study of language
learning and processing.

Non-augmented LLMs fall short on functional linguistic competence
Real-life language use is impossible without non-linguistic cognitive skills. Understanding a sen-
tence, reasoning about its implications, and deciding how to respond all rely on cognitive capac-
ities that go beyond formal competence. In this section, we ask: how good are contemporary
LLMs at functional linguistic competence?
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We focus on four key capacities that are not language-specific but are nevertheless crucial for
language use in real-life settings: (i) formal reasoning: a host of abilities including logical and
mathematical reasoning, computational thinking, and novel problem solving; (ii) world knowledge:
factual and commonsense knowledge about agents, objects, properties, actions, events, and
ideas; (iii) situation modeling: the dynamic tracking of objects, agents, and events as a
narrative/conversation unfolds over time; and (iv) social reasoning: understanding the social con-
text of linguistic exchanges. An average conversation requires the use of all these capacities, yet
none of them are specific to language use.

For each domain, we first describe its neural mechanisms in humans and then discuss how well
contemporary LLMs have mastered the domain. We conclude that, unlike formal competence,
functional competence of LLMs is uneven, often requiring specialized fine-tuning and/or lack-
ing human-like robustness and generality. In Box 4, we highlight the importance of properly
evaluating LLMs; evaluation issues can occur in studies of either formal or functional compe-
tence, but we believe they have led to a particularly large amount of overclaiming about models’
functional competence.
Box 4. Important considerations for evaluating functional competence

In discussing different domains of functional competence, it is important to highlight two key considerations.

(i). Fine-tuning on the task and the challenge of closed models

When discussing whether an LLM excels in a particular domain, it is essential to note whether the model has been fine-
tuned on the task of interest. Formal competence skills can be observed in many LLMs trained on word-in-context
prediction, without the need to specifically fine-tune them on syntactic trees or other grammatical abstractions. Functional
competence skills, however, are often boosted through additional fine-tuning on some relevant corpus, the task of interest,
or using more general fine-tuning techniques like reinforcement learning based on human feedback (RLHF). Claims
such as ‘LLMs succeed at theory of mind’ often apply to fine-tuned models, not the generic word-in-context prediction
machines.

An extreme case of task-specialized fine-tuning is when the task materials are, in fact, included in the model’s training set.
LLMs can memorize large amounts of information (and this trend becomesmore pronounced in larger models [209]), such
that prompting them with the exact sentences (or similar sentences) they have encountered during training will give highly
inflated performance metrics.

Identifying whether performance boost on a given task comes from generic changes to the model (such as increasing the
model size or the amount of training data) versus task-specific changes (such as fine-tuning on a similar task) is essential
for further model understanding and improvement.

The closed nature of many LLMs (like the latest GPT models) make evaluating them in these ways difficult or impossible.
Thus, we believe that useful scientific knowledge will increasingly come from studying models whose training data,
architecture, and training procedure are transparent and able to be studied [3,53].

(ii). Generalizable, robust performance

When probing a particular ability, it is important to evaluate the models’ performance across a variety of tasks, prompts,
and scenarios. A failure to generalize beyond a particular surface-level form of the input may indicate that a model is using
a non-human-like computational mechanism. For instance, it is sometimes the case that a model might perform well on a
particular benchmark by leveraging low-level co-occurrence patterns (e.g., learning to predict that sentence A entails sen-
tence B just because sentences A and B have overlapping lexical items), but as soon as these obvious patterns are re-
moved, the model’s performance might drop to chance levels [196].

A particular danger when evaluating model abilities is excessive reliance on single examples. As in any scientific endeavor,
assessing a phenomenon requiresmultiple observations to ensure generalizability and replicability. Thus, we here emphasize
systematic benchmark-based evaluations rather than single examples (although those can be informative for illustrating a
phenomenon or for initiating a more in-depth exploration).
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Formal reasoning
Language allows people to discuss highly abstract ideas, turn ideas into scientific and philosophical
theories, construct logical syllogisms, and engage in formal debates. Unsurprisingly, language is
often considered a cornerstone of complex reasoning [119,120]. However, neuroscience
provides evidence that language and formal reasoning dissociate in cognitive systems and
so a model that has mastered formal linguistic competence will not necessarily exhibit logical
reasoning abilities.

Humans. Despite their close interplay, language and reasoning rely on distinct cognitive and
neural systems. Unlike language, formal reasoning engages brain regions known as the
multiple demand network [121], named so because these regions are engaged in many cog-
nitively demanding tasks: logic [47], mathematical reasoning [41], physical reasoning [122],
and computer code comprehension [46,123]. Human patient studies have provided causal
evidence for the role of the multiple demand network in logical reasoning by showing that
the amount of damage to these regions correlates negatively with performance on standard
tests of fluid intelligence [124,125]. Importantly, the multiple demand network supports
reasoning even when the task is presented linguistically [41,47,123], similar to how LLMs re-
ceive their prompts.

LLMs. Multiple studies have pointed out LLMs’ limitations on tasks requiring formal reasoning,
such as math problems. GPT-3 performs well on two-digit addition and subtraction but not on
more complex tasks, such as three-digit addition or two-digit multiplication [89]. GPT-4 similarly
shows good performance on small-digit but not large-digit mathematical operations [126]. Rea-
soning tests that break common co-occurrence patterns in the input or require multi-step oper-
ations also lead to model failure [127,128].

The most commonly cited reason for these failures is the failure of artificial neural nets to gen-
eralize to patterns outside their training distribution [128,129]. This generalization gap can be
partially bridged by ‘chain of thought’ approaches, whereby a model is prompted to generate
intermediate computation steps before arriving at an answer [130]. However, even these ap-
proaches do not lead to foolproof results [126]. Thus, more and more researchers pair LLMs
with external modules that can carry out structural logical and mathematical computations,
such as the Mathematica plugin (https://www.wolfram.com/wolfram-plugin-chatgpt/) or a
probabilistic reasoning engine [131]. The shift toward augmenting LLMs with reasoning-
specific modules is consistent with evidence from neuroscience: language and formal reason-
ing are distinct cognitive capacities that work best when they are supported by separate
processing mechanisms.

World models 1: factual and commonsense knowledge
A commonly debated capacity in LLMs is their ability to leverage internal world models [131,132].
We break down the notion of world models into two components: world knowledge (factual and
commonsense, this section) and situation tracking (the ability to maintain and update information
about objects, agents, etc.; next section).

Humans. Evidence from neuroscience shows a dissociation between linguistic and semantic
(world) knowledge. Individuals with language deficits may struggle to produce grammatical utter-
ances and retrieve contextually appropriate words, but their ability to reason about objects and
events presented non-linguistically often remains intact [42,133]. However, individuals who suffer
from semantic dementia (a neurodegenerative disorder) retain the ability to speak but struggle
with tasks that rely on world knowledge (e.g., knowing that pumpkins are typically orange)
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even when the stimuli are presented non-verbally as pictures [134]. Thus, linguistic and semantic
knowledge can be disentangled.

LLMs. LLMs have access to a wealth of knowledge about the world: word co-occurrence
patterns in texts on the web contain both factual information (e.g., who was the first man
on the moon) and commonsense information (e.g., the taste of lemon) [135]. If this informa-
tion can be effectively extracted, LLMs would be able to serve as off-the-shelf knowledge
bases [136]. However, world knowledge contained in LLM representations suffers from
several major shortcomings.

First, LLMs routinely generate false statements, informally known as ‘hallucinations’. This obser-
vation is unsurprising: their training objective is to generate plausible sentence continuations, with
no reference to the underlying factual correctness of the resulting claims. Some developers have
fine-tuned LLMs to provide links to sources that back up their claims; however, those citations
can also be inaccurate [137].

Second, LLM outputs are often inconsistent: the same prompt phrased in different ways can elicit
different responses [138]. They can also get ‘distracted’ by intervening information (e.g., an irrel-
evant claim inserted between a premise and a conclusion) [88].

Third, commonsense knowledge is often under-represented in language corpora: people are
much more likely to communicate new or unusual information rather than commonly known
facts [139]. As a result, LLMs can struggle on commonsense knowledge benchmarks [140],
especially once low-level statistical cues are controlled for [9].

And fourth, explicitly stated factual knowledge is easy to access but hard to maintain,
requiring constant updates; for instance, the answer to ‘Who is the current president of
the USA?’ will change every 4 or 8 years. Whereas humans can update their knowledge
representations via a single sentence, updating world knowledge in LLMs requires locating
and editing this particular bit of knowledge in their internal parameters, a non-trivial task
[141], especially because these edits should affect some other bits of knowledge
(e.g., that the previously current president is now the past president) but leave many
other facts unaffected [142].

A more human-like approach to world knowledge representation might require dissociating
linguistic representation/processing and world knowledge storage/updates. Such
approaches exist (e.g.,[143]) but have not yet reached dominance in the field, typically
because of relatively low coverage of existing knowledge bases. Although we cannot
rely on LLMs alone for accurate world knowledge claims, we might use them as a
starting point for constructing detailed knowledge bases [144] and commonsense sche-
mata [145].

World models 2: situation tracking
People can follow the plot of a story that spans multiple chapters or even multiple books. We
can also remember many details weeks or months after a conversation. We accomplish
these feats by leveraging language inputs to create a ‘situation model’, a mental model of en-
tities, relations between them, and a sequence of states they had been in or events they had
participated in [146]. Does the language network in humans construct a situation model
based on its inputs? And how good are LLMs at building and updating situation models over
time?
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Humans. The language network in humans does not appear to track structure above the clause
level [147,148]. Instead, integration of meaning over longer periods of time likely takes place
within the so-called default network [149]. Crucially, the default network tracks both linguistic
and non-linguistic narratives [150], indicating that situation modeling is not a language-specific
skill.

LLMs. Situationmodeling in LLMs faces twomain challenges: (i) extracting information frommany
sentences in a row, and (ii) integrating incoming inputs to appropriately update information about
entities and their states.

The first problem is currently being tackled by continuously increasing the models’ context win-
dow (i.e., the number of words they can process in one go). This approach will inevitably run
into computational challenges: when summarizing a book, having amodel that simultaneously at-
tends to each word in that book is vastly inefficient (although see some attempts to overcome this
issue, e.g., [151]). A human-like solution to this problem might include hierarchical processing
(e.g., generating a summary for each chapter and then for the whole book; for related ap-
proaches, see [152,153]).

Even when LLMs operate over shorter spans of text that easily fit inside their context windows,
the question is: can they update their internal representations to track changes in the world?
Some evidence suggests that they can [154], although LLMs make characteristically non-
human-like mistakes when it comes to situation modeling: for instance, their outputs can refer
to non-existent discourse entities (‘Arthur doesn’t own a dog. The dog is brown.’ [155]). Thus,
whether robust situation model building over shorter span of text is feasible using an LLM-only
architecture remains a matter of debate.

Social reasoning
'Water!'

Wittgenstein famously used single-word utterances like this to show that linguistic meaning
radically depends on context. Although this word’s literal meaning is straightforward, the intended
meanings are more varied. Is the word being gasped by a thirsty person in the desert? By a hiker
warning his friend of a hidden stream? An impatient diner talking to a waiter? Work in cognitive
science and linguistics has come to recognize that these context-dependent aspects of language
are not just peripheral but a central part of human language production and understanding
[12,28].

The set of skills required to infer the intended meaning of an utterance beyond its literal con-
tent is known as pragmatics. Pragmatics likely engages a variety of neural mechanisms
[156–158], including both the language network and other brain regions. Thus, different
types of pragmatic reasoning can be classified either as formal or as functional competence.
Here, we focus on one core functional competence capacity required for pragmatics: social
reasoning.

Humans. A wealth of neuroscientific evidence shows that the human brain has dedicated ma-
chinery for processing social information [44,159]. The most relevant to our current discussion
is the theory of mind network [160], a set of brain regions that are engaged when their owner
is attempting to infer somebody’s mental state (with our without the use of language
[161,162]). The specific contributions of the theory of mind network to language understanding
can be divided into two broad categories. First, just like other functionally specialized brain
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modules, it is engaged when processing semantic content that is specifically related to its do-
main: narratives that require inferring the mental state of the characters engage the theory of
mind network [162] and texts that require inferring the characters’ intentions evoke greater activity
than those that do not [163,164]. Second, the theory of mind network is engaged more strongly
during nonliteral language comprehension, including phenomena like jokes, sarcasm, indirect
speech, and conversational implicature [158,165], in other words, in situations where understand-
ing the meaning of an utterance requires inferring the intentions of the speaker. Thus, successful
language understanding relies on our broader, non-language-specific social inference skills.

LLMs. Recent models, trained with RLHF, have shown strong performance in interpreting non-
literal utterances, such as metaphors and polite deceits, suggesting they can reach human or
near-human performance on at least some pragmatic tasks [166]. That said, LLMs exhibit uneven
performance across pragmatic domains: their ability to interpret sarcasm or to complete jokes
was limited even as their metaphor comprehension abilities soared [166]. Overall, at least some
forms of pragmatic inference might be acquired via pre-training coupled with targeted fine-
tuning. It remains an open question whether aspects of pragmatics that are easiest for LLMs
are those that are supported by the language network in humans.

LLMs’ ability to solve theory of mind tasks has been subject to particular controversy. These tasks
require both social knowledge and the ability to maintain a situation model. A typical example
would feature character X moving an object from location A to location B while character Y is
not around and so, does not see the move. The goal is to predict the true location of the object
(location B) and the location where character Y believes the object is (location A). A bold claim
that instruction-tuned LLMs have mastered theory-of-mind tasks [167] was quickly countered
by a demonstration that including basic controls (such as character Y being told about the true
object location) brought LLM performance to below-chance levels [168]. Several other studies
have identified limitations in LLM performance on theory of mind tasks [169–171] (cf. [172]).
One solution to overcome these limitations has been to augment an LLM with a symbolic tracker
of entity states and character beliefs [173], an approach that mirrors the separation between lan-
guage and theory of mind processing in humans.

Language input can bootstrap functional competence capabilities
Many non-linguistic cognitive capabilities can be substantially enhanced by language input.
In humans, this relationship is particularly salient during development: babies learn new
conceptual categories more easily when they are accompanied by linguistic labels [174]
and children with delayed language access have delayed social reasoning abilities [175].
Even in adulthood, knowledge of specific number words predicts the ability to conceptually
represent exact numbers [176]. Coupled with the fact that language inputs contain vast
quantities of information about the world, and that language is both a crucial data source
and representational substrate for much of people’s world knowledge, this evidence sug-
gests that, in principle, a model trained exclusively on language input could acquire much
of functional linguistic competence.

Thus, we do not argue that functional linguistic competence is out of reach for language-based
models; our main goals are: (i) to highlight the conceptual distinction between formal and
functional linguistic competence, which in the human brain draw on separate neural circuits;
and (ii) to demonstrate the gulf between LLMs’ formal and functional linguistic abilities. These
facts lead to a speculation that, like the human brain, models that can master language use
would also require or benefit from separate mechanisms for formal and functional competence.
We discuss this idea next.
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Toward models that use language like humans
In this paper, we have advanced the thesis that formal and functional linguistic competence are
distinct capabilities, with formal competence relying on distinct language machinery and function
competence requiring the integration of diverse brain networks. We have shown that formal com-
petence emerges in contemporary LLMs as a result of the word-in-context prediction objective;
however, this objective alone appears insufficient for equipping LLMs with functional linguistic
competence skills. Based on the neuroscience evidence, we suggest that models that succeed
at real-life language use will need to be modular, mimicking the division of labor between formal
and functional competence in the human brain.

We see at least two ways to separate LLM circuits responsible for formal and functional compe-
tence: explicitly building modularity into the architecture of the system (we call this architectural
modularity) or naturally inducing modularity through the training process, both through the train-
ing data and the objective function (we call this emergent modularity).

Architectural modularity has a long history; it involves stitching together separate components,
perhaps with quite specialized architectures [177,178]. Modern-day examples include a trans-
former language model paired with a separate memory module (e.g., [143,179]) or a model for
visual question answering, which includes a language module, a vision module, and a reasoning
module [180,181]. Such modular models achieve high task performance, are more efficient
(i.e., can be trained on smaller datasets and have lower compute demands during inference),
and show better generalizability (i.e., perform well on datasets with previously unseen properties).
The modules of such models can be trained separately or together, similarly to how humans can
flexibly combine different cognitive skills when learning to perform novel complex tasks.

Recently, the desire for this kind of modularity has expanded to include attempts to augment
language models with the ability to call separate programs, as in including API calls [182],
mathematical calculators [183], planners [184], and other kinds of modules that do specific
structured operations.

Another approach in this vein uses LLMs as modules to translate a natural language query into
code, which can then be passed to a symbolic module, which then generates an answer.
Wong, Grand, et al. [131] outline a research program for this approach, showing that a version
of GPT-3 fine-tuned to generate both natural language and code (Codex) can translate text input
into meaningful structured probabilistic programs; inference in these programs can be used to rea-
son over relational domains (like kinship systems), grounded domains (like visual scenes), and sit-
uations that require planning and understanding the plans of others. Their approach demonstrates
a promising avenue for integrating what LLMs succeed at (namely, formal linguistic competence)
with other cognitive modules that benefit from symbolic structure and abstraction.

The emergent modularity approach involves training models end-to-end (similarly to contempo-
rary LLMs) while creating the conditions that facilitate the emergence of specialized model sub-
components over the course of training. Modular structure has been shown to spontaneously
emerge in some end-to-end neural network systems in domains other than language (e.g.,
[185,186]), which suggests that emergent modularity may constitute an optimal solution to
many complex tasks. One strategy for this approach to be successful is for the model architec-
ture to incentivize the development of individual, specialized modules within the model. Trans-
formers, the most popular architecture today, satisfy this condition to some extent by allowing
different attention heads to attend to different input features (e.g., [187–189]); certain approaches
promote modularization even more explicitly (e.g., by endowing transformers with a mixture-of-
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experts architecture that incentivizes separate ‘experts’ to carry out different computations
[190–192]).

A modular model architecture is much better aligned with the brain’s functional architecture for
language, which includes separate components for formal and functional competence. Is it
possible to build formally and functionally competent systems that do not mimic the modular
structure of the human brain? In theory, yes: systems with different underlying architectures
(e.g., modular versus non-modular) can, in principle, exhibit similar behaviors. However, explic-
itly disentangling formal and functional competence skills at the architectural level is perhaps
the most fail-safe path toward ensuring that an artificial intelligence (AI) model uses language
in a human-like way.

Concluding remarks
Over the past few years, the discourse around language models has consisted of a curious mix
of overclaiming and underclaiming [65]. While some claim models are on the verge of intelli-
gence, others have pointed out the many failures of LLMs on a broad range of tasks, from num-
ber multiplication to generating factually true statements. Here, we have put these seemingly
inconsistent reactions in dialog with prior and ongoing work in computational linguistics, cog-
nitive science, and neuroscience. In particular, we argue that LLMs are remarkably successful
on tasks that require a particular type of structural and statistical linguistic competence: formal
linguistic competence. Although their performance is not yet fully human-like, these models
achieve an impressive degree of success in representing and using hierarchical relationships
among words and building representations that are sufficiently abstract to generalize to new
words and constructions. As such, these LLMs are underused in linguistics as candidate
models of human language processing.

We also review some of the LLMs’ failures on tasks that target real-life language use, such as rea-
soning, while highlighting that the capabilities these tasks require are fundamentally distinct from
formal language competence and rely on machinery in the human brain distinct from language
processing machinery.

The failures of LLMs on non-linguistic tasks do not undermine their utility as models of language
processing. After all, the brain areas that support language processing in humans also cannot
do math, solve logical problems, or even track the meaning of a story across sentences or par-
agraphs. If we take the human mind and brain – a good example of generalized intelligence, as
a guide, we might expect that future advances in developing intelligent systems will require
combining language models with models that represent abstract knowledge and support com-
plex reasoning, rather than expecting a single model (trained with a single word prediction ob-
jective) to do it all. Finally, to detect and monitor such advances, we need benchmarks that
cleanly separate formal and functional linguistic competence (Box 5). Formally and rigorously
evaluating functional competence in LLMs will be informative for both science and engineering
(see Outstanding questions).

To those who have argued that the most interesting aspects of human language cannot be
learned from data alone, we say that LLMs compellingly demonstrate the possibility of learning
complex syntactic features from linguistic input (even if, as of now, much more input is required
than a typical child gets exposed to). To those who criticize LLMs for their inability to do complex
arithmetic or to reason about the world, we say, give language models a break: given a strict sep-
aration of language and non-linguistic capabilities in the human mind, we should evaluate these
capabilities separately, recognizing successes in formal linguistic competence even when non-
18 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Outstanding questions
Howmuch functional competence can
be acquired from the linguistic signal?
Humans use language as a substrate
for knowledge and so LLMs acquire
non-linguistic information from the lin-
guistic signal. How much information
in this signal can be used to bootstrap
functional competence? Are there as-
pects of functional competence that
cannot be learned from language
at all?

How can we train competent language
models on smaller amounts of data?
LLMs have achieved remarkable
linguistic competence but they are
trained on data very unlike what human
children encounter. Although LLMs
receive vastly more words (several
orders of magnitude), they lack the
richly structured and interactive input
thought to be essential to child
language acquisition. Would benefits
emerge from training models in more
interactive and human-like ways?

Will the formal competence successes
of LLMs transfer to other world
languages? Most LLM evaluations
have taken place in English and a
handful of other world languages.
Building models for lower-resourced
languages and evaluating them on
both formal and functional dimensions
is an important ongoing project.

How long will the LLM growth con-
tinue? Ten years ago, most re-
searchers in the field would not have
predicted that LLMs would be as ad-
vanced as they are today. Will current
AI approaches lead to further revolu-

Box 5. The need for better benchmarks

To assess progress on the road toward building models that use language in human-like ways, it is important to develop
benchmarks that evaluate both formal and functional linguistic competence. This distinction can reduce the confusion that
arises when discussing these models by combating the ‘good at language -> good at thought’ and the ‘bad at thought ->
bad at language’ fallacies.

Several existing benchmarks already evaluate formal linguistic competence in LLMs [72,75] and can be complemented by
additional tests of core linguistic features: hierarchy and abstraction. Benchmarks for evaluating different domains of func-
tional linguistic competence, like commonsense world knowledge (e.g., WinoGrande [210]), can often be ‘hacked’ by
LLMs by leveraging flawed heuristics [211]. This issue is likely exacerbated in large-scale heterogeneous datasets like
BIG-bench [5]. Moreover, functional competence benchmarks often rely on a certain, often underspecified level of required
formal linguistic competence skills and/or mix together different functional competence abilities. Designing benchmarks
that carefully disentangle different components of language knowledge and use would therefore constitute an important
step toward a more informative assessment of LLMs.

Trends in Cognitive Sciences
linguistic capabilities lag behind. Finally, to those who are looking to improve the state of machine
learning systems, we suggest that, instead of, or in addition to, continuously scaling up the
models [193], more promising solutions will come in the form of modular architectures, built-in
or emergent, that, like the human brain, integrate language processing with additional systems
that carry out perception, reasoning, and action.
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for different competence types. Mecha-
nistic interpretability studies can shed
light on the extent to which different
cognitive tasks might segregate even
within today’s LLMs.

Should LLMs be described as individual
language users or as distributions over
potential user outputs? There are
different ways to think about LLMs in
the context of language use, for
example, as individual language users
(‘agent-based view’) or as tools
augmenting human activities, like a
calculator (‘tool-based view’) [212–214].
Which of these views will be the most
fruitful way to think about LLMs as they
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where LLMs fall short as models of
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